

Product Overview

Milling | Sieving | Assisting

The standard for spectral analysis

(Doglas

RS 200

part of VERDER

RETSCH – 100 Years of Innovation

Global market leader in the preparation and characterization of solids – quality "made in Germany".

The company was founded in 1915 by F. Kurt Retsch. A few years later he registered his first patent in grinding technology: a mortar grinder that became famous worldwide as the "RETSCH Mill". This innovation replaced tiresome manual grinding with hand mortars which was the standard in laboratories at the time and earned RETSCH an excellent reputation in the international science and research community.

Today RETSCH is the leading solution provider for size reduction and particle sizing technology with subsidiaries in the US, China, Japan, India, France, Italy, Benelux, Russia, UK and Thailand and an export share of 80%.

RETSCH's philosophy is based on customer orientation and leading edge technology. This is reflected in instruments whose high-quality components are designed for perfect interaction. RETSCH products not only guarantee representative and reproducible results for grinding and particle analysis but also allow for easy and comfortable operation.

With RETSCH you get:

- First class product quality thanks to advanced manufacturing methods
- Comprehensive application support including free test grindings and product trainings
- Excellent sales and service network throughout the world

www.retsch.com

Integrated Solutions

We see ourselves as solution providers. In addition to our extensive product program we offer competent application support and technical assistance.

Application Consulting

For us professional customer service is about offering individual and specific advice, by phone or on-site in our application laboratories worldwide. Our application experts process and measure your samples free-of-charge and provide a recommendation for the most suitable method and instrument. Finally, we offer free application consultations at your doorstep with our fully equipped laboratory bus

Application Database

Our application specialists process and characterize a large number of customer samples every day. The most interesting results are collected in an online database which currently contains more than 2,000 test reports. The application database is an excellent tool for a first impression as to which instrument may be suitable for a particular application or sample material.

Test Grinding

The "Applications" menu offers the possibility to download the questionnaires for "milling" and "sieving". These can be sent together with the sample material to our lab team for free test grinding or sieving. Use this direct link **www.retsch.com/testgrinding.**

Seminars and Workshops

Alone or with renowned partners in the laboratory industry we regularly offer seminars and workshops about different aspects of sample preparation, particle measurement and analytics. Dates and places are published on our website.

1915

The company is founded by F. Kurt Retsch in Duesseldorf.

1923

F. Kurt Retsch develops and patents a mortar grinder which becomes known as the RETSCH Mill and is synonymous with the concept of easier and better laboratory work.

1952

Engineer Dirk Sijsling assumes management responsibility for F. Kurt Retsch KG. The production of laboratory equipment gains more and more importance.

1959

RETSCH extends the product line with sieve shakers, sample dividers and magnetic stirrers. More space is required for production, leading to the move of the company into larger premises in Haan.

1963

RETSCH intensifies its cooperation with universities and institutes to ensure their equipment is always up to the latest technological standards. By the end of the sixties, the export share has increased to 35%.

1976

The company moves to a new expanded location in Haan.

1989

RETSCH becomes part of the Dutch VERDER group and gradually manages the transition from a family business to an international company.

as of 1993 🛉

Subsidiaries in the US, China, Japan, India, France, Italy, Benelux, Russia, UK and Thailand ensure RETSCH's direct presence in the major economies of the world.

• 1998

Foundation of RETSCH TECHNOLOGY.

2012

RETSCH moves to new premises in Haan (headquarter of the Verder Scientific division).

2014

Market launch of the revolutionary High Energy Ball Mill Emax.

2015

RETSCH celebrates its 100th anniversary.

www.retsch.com | Copyright $\ensuremath{\mathbb{C}}$ by RETSCH GmbH, Haan

Reproducible Sample Preparation for Reliable Analysis Results

A reliable and accurate analysis can only be guaranteed by reproducible sample preparation. The "art of milling and homogenization" is turning a laboratory sample into a representative part sample with homogeneous analytical fineness. For these tasks RETSCH offers a comprehensive range of the most modern mills and crushers for coarse, fine and ultra-fine size reduction of almost any material. The choice of grinding tools and accessories not only ensures contamination-free preparation of a wide range of materials but also the adaptation to the individual requirements.

Jaw Crushers

RETSCH's range of jaw crushers comprises four different models for coarse and primary size reduction of hard, brittle materials – from compact bench-top units to robust floor models with high throughput rates which can be integrated into automatic installations. Breaking jaws of different materials ensure neutral-to-analysis size reduction.

Rotor Mills

Four different types of rotor mills are available for the pulverization of granular, soft, medium-hard or fibrous sample materials. All mills can be equipped with a cyclone for improved sample discharge and cooling. Depending on the model, the mills are suitable for the preparation of very small amounts but also for use in pilot plants.

Cutting Mills

RETSCH offers a whole family of cutting mills – from the budget-priced basic model to the powerful high performance unit with high torque and RES technology – for primary size reduction of soft, medium-hard, elastic, tough and fibrous sample materials. The wide range of accessories allows for perfect adaptation to a variety of applications.

Knife Mills

The GRINDOMIX Knife Mills are perfectly suited for the quick and thorough homogenization of solid samples with high liquid, oil or fat content. Thanks to interval and reverse mode and a wide selection of accessories even difficult samples are completely homogenized in the GRINDOMIX mills.

Disc Mills and Mortar Grinders

The RETSCH portfolio comprises the ergonomic Vibratory Disc Mill RS 200 – the standard mill for sample preparation to spectral analysis within seconds – as well as two disc mill models for primary and fine size reduction of hard and abrasive materials up to 8 Mohs. All disc mills can be equipped with grinding tools made of different materials to ensure neutral-to-analysis sample preparation. The RETSCH mortar grinder mixes and homogenizes powders, suspensions and pastes, also with high viscosity.

Vibratory Disc Mill RS 200

 Mortar Grinder

RM 200

www.retsch.com | Copyright © by RETSCH GmbH, Haan

Ball Mills

RETSCH's ball mill range is the widest in the world, offering optimum solutions for the pulverization of medium-hard, hard, brittle and fibrous samples with high energy input. The High Energy Ball Mill Emax and the Planetary Ball Mills pulverize samples down to the nanometer range with impact and friction in dry and wet mode. These mills are also ideally suited for mechanical alloying.

The mixer mills are specially designed for quick grinding, mixing and homogenization of small sample volumes, as well as for cell disruption. The CryoMill is the perfect choice for efficient pulverization and homogenization of elastic and temperature-sensitive sample materials under continuous embrittlement with liquid nitrogen at -196 °C. The compact XRD-Mill McCrone is used for sample preparation to X-Ray diffraction.

Icons used in this catalogue

PRODUCT NEWS This icon marks products which appear in the RETSCH catalogue for the first time

MILLING

Maximum feed size and final fineness

grinding

This mill is suitable for cryogenic

Cyclone for improved material discharge and additional cooling

SIEVING

Measuring range of sieve shakers / particle analyzers

Suitable for wet sieving /

for measuring suspensions

Suitable for dry sieving / for measuring dry samples

Selection Guide for Size Reduction Tools

Applications

Selection Guide for Size Reduction Tools

The following selection guide gives an overview of the application areas of RETSCH mills and crushers. The selection of a suitable mill depends on the individual application. This table only serves as a first orientation Со ар

 suitable to a limited of a suitable only a suitable suitable to a limited of not suitable 	extent	or you	r				Construction materials	Soil, sewage sludge	Chemical products	Electronic waste	Feed stuff	Glass, ceramics	Wood, bones, paper	Coal, coke	Plastics, cable, rubber	Food	Leather, textiles	Minerals, ores, rocks	Pharmaceutical product	Plants, hay, straw	Secondary fuels
Jaw Crushers M	1odel	Feed s appro	ize* ox.	Fina finene appr	al ess* ox	Page															
Jaw Crusher B	B 50	40	mm	500	μm	12		۲	$\overline{}$	-	-		\bigcirc	\bigcirc	-	-	-	0	-	-	-
Jaw Crusher B	B 100	50	mm	4	mm	12			$\overline{}$	-	-	۲	-		-	-	-	\bigcirc	-	-	-
Jaw Crusher B	B 200	90	mm	2	mm	12			$\overline{}$	-	-		-	\bigcirc	-	-	-	\bigcirc	-	-	-
Jaw Crusher B	B 300	130	mm	5	mm	12		۲	$\overline{}$	-	-	\bigcirc	-		-	-	-	0	-	-	-
Rotor Mills	·																				
Ultra Centrifugal Mill Z	M 200	10	mm	40	μm	16	$\overline{\bigcirc}$	۲	\bigcirc	igodol	\bigcirc	-	\bigcirc	\bigcirc	ig)		\bigcirc	۲	\bigcirc	$oldsymbol{O}$	0
Rotor Beater Mill S	R 300	25	mm	50	μm	20	$\overline{\bigcirc}$	۲	\bigcirc	-	\bigcirc	-	$\overline{}$		$\overline{}$	\bigcirc	$\overline{}$				-
Cross Beater Mill S	K 300	25	mm	100	μm	22	$\overline{\bigcirc}$		\bigcirc		$\overline{}$	۲	-		-	-	$\overline{}$	\bigcirc	$\overline{\mathbf{O}}$	-	$\overline{}$
Cyclone Mill T	WISTER	10	mm	250	μm	24	-	-	-	-	\bigcirc	-	-	-	-	\bigcirc	-	-	$\overline{\mathbf{O}}$		-
Knife Mills	· · · · · · · · · · · · · · · · · · ·																				
Knife Mill G	RINDOMIX GM 200	40	mm	300	μm	26	-	-	\bigcirc	-	\bigcirc	-	-	-	-	\bigcirc	-	-	\bigcirc	۲	-
Knife Mill G	RINDOMIX GM 300	130	mm	300	μm	26	-	-	\bigcirc	-	\bigcirc	-	-	-	-	\bigcirc	-	-	\bigcirc		-
Cutting Mills	, i i i i i i i i i i i i i i i i i i i																				
Cutting Mill S	M 100	80x60	mm	250	μm	28	-	-	$\overline{}$	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	$\overline{}$		\bigcirc	-	$\overline{\mathbf{O}}$		$\overline{\bigcirc}$
Cutting Mill S	M 200	80x60	mm	250	μm	28	-	-	$\overline{}$		\bigcirc	-	\bigcirc		lacksquare	\bigcirc	\bigcirc	-	$\overline{\mathbf{O}}$		0
Cutting Mill S	M 300	80x60	mm	250	μm	28	-	-	$\overline{}$	\bigcirc	\bigcirc	-	\bigcirc		•	\bigcirc	\bigcirc	-	$\overline{\mathbf{O}}$		0
Mortar Grinders/Disc Mills	5				°																
Mortar Grinder R	RM 200	8	mm	10	μm	32		\bigcirc	lacksquare	-	-		$\overline{}$	\bigcirc	-		-	•	\bigcirc		-
Disc Mill D	OM 200	20	mm	100	μm	34		\bigcirc	\bigcirc		$\overline{}$	۲	-	\bigcirc	-	-	-		-	-	-
Disc Mill D	OM 400	20	mm	50	μm	34		\bigcirc	\bigcirc	۲	\bigcirc	\bigcirc	-	\bigcirc	-	-	-	\bigcirc	-	-	-
Vibratory Disc Mill R	RS 200	15	mm	20	μm	36			\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	\bigcirc	$\overline{}$	ig)	\bigcirc
Ball Mills																					
XRD-Mill M	IcCrone	500	μm	1	μm	38		۲	\bigcirc	-	-	\bigcirc	-	۲	-	-	-	\bigcirc	$\overline{\mathbf{O}}$	۲	-
Mixer Mill C	CryoMill	8	mm	5	μm	40		\bigcirc	\bigcirc	igodot	\bigcirc	•	\bigcirc	\bigcirc	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	•
Mixer Mill M	1M 200	6	mm	10	μm	42	0	\bigcirc	\bigcirc		\bigcirc	۲	\bigcirc	\bigcirc	$\overline{}$	۲	\bigcirc		$\overline{\mathbf{O}}$	\bigcirc	\bigcirc
Mixer Mill M	1M 400	8	mm	5	μm	42		\bigcirc	\bigcirc		\bigcirc		•			$ \bigcirc $	\bigcirc	0	\bigcirc		\bigcirc
High Energy Ball Mill E	max	5	mm	80	nm	44		\bigcirc	\bigcirc		\bigcirc		•		-	۲	$\overline{}$	0	\bigcirc		\bigcirc
Planetary Ball Mill P	M 100	10	mm	100	nm	46			•	\bigcirc	$\overline{}$		•	\bigcirc	-		$\overline{}$	0	\bigcirc		\bigcirc
Planetary Ball Mill P	M 100 CM	10	mm	100	nm	46					$\overline{\bigcirc}$				-		$\overline{}$				$\overline{}$

(i) Please note:

Planetary Ball Mill

Planetary Ball Mill

The achieved final fineness depends on the sample material and instrument configurations

4 mm

10 mm

100 nm

100 nm

46

46

 \bigcirc ۲

-۲

_ ۲

 \ominus

 \bigcirc

which means that different results may be obtained with apparently similar samples.

PM 200

PM 400

 \bigcirc

 \bigcirc

 Θ

 \bigcirc

Innovative Technology Sets Standards Worldwide

RETSCH's range of sieving machines not only covers a very wide measuring range, it also provides a suitable model for virtually any bulk material thanks to different sieving motions and sieve diameters. The instruments are used in research & development, quality control of raw materials, semi-finished and finished products as well as in production monitoring and comply with the requirements of DIN EN ISO 9000 ff.

All "control" sieve shakers can be calibrated and provide reproducible, globally comparable results thanks to the possibility to set the sieve acceleration which is independent of the power frequency.

Vibratory Sieve Shakers

The patented electromagnetic drive of the vibratory sieve shakers produces a 3-D throwing motion which ensures optimum use of the open sieve area and lets the sample move equally over the whole sieving surface. The AS 200 series provides a suitable instrument for every requirement and budget. The AS 300 control is designed for large feed quantities up to 6 kg.

The two AS 450 models fractionate up to 15, respectively 25, kg of sample in one working run and achieve high separation efficiency.

Horizontal Sieve Shaker, Tap Sieve Shaker and Air Jet Sieving Machine

Horizontal sieving (AS 400), tap sieving (AS 200 tap) and air jet sieving (AS 200 jet) are used for the particle size determination of materials which are not suitable for vibratory sieving and whenever these separation methods are stipulated by certain standards.

Particle Size and Particle Shape Analysis with Dynamic Image Analysis

Dynamic Image Analysis is one of the most accurate methods when it comes to measuring the particle size and particle shape. It is an established alternative to sieve analysis and laser diffraction and is greatly superior to these with regard to precision, reproducibility and information content in a size range from 1 µm to 30 mm. The particle analyzer CAMSIZER P4 measures pourable bulk goods and granulates with a maximum particle size of 30 mm. The CAMSIZER XT is ideally suited for analyzing fine powders and suspensions up to 3 mm.

The perfect solution for each measuring range

1 n	m	1	μm		1 mm	1 m
Sieve Analysis						
AS 200				20 µm	25 mm	
AS 300				20 µm	40 mm	
AS 450				25 µm	125 mm	
AS 400				<mark>45 μm</mark>	63 mm	
AS 200 tap				20 µm	25 mm	
AS 200 jet				10 µm	4 mm	
Dynamic Image Analysis						
CAMSIZER P4				20 µm	30 mm	
CAMSIZER XT			1 μm		3 mm	

Assisting – The Key to Greater Efficiency in the Laboratory

From representative, reproducible sampling and sample division to uniform, continuous material feed; from efficient preparation of solid pellets for XRF analysis to rapid cleaning of grinding tools and test sieves to gentle sample drying: RETSCH offers a comprehensive range of useful assistants which enhance the performance of our mills and sieve shakers even further and ensure reliable analysis results.

Expert Guides

Would you like to learn more about Milling and Sieving?Please visit our website and download our expert guides:"The Art of Milling" with comprehensive material overview

Sieve Analysis – Taking a close look at quality" with sieve comparison table www.retsch.com/downloads

We are happy to send you a printed copy on request.

Product Range "X-Large"

In addition to the instruments for size reduction on a laboratory scale RETSCH now offers a complete range of products for applications with large feed sizes and high throughputs. The jaw crushers, vibratory disc mills and drum mills of the "X-Large" portfolio are mainly used in application areas such as construction materials, mining and energy in a pilot plant environment.

The line also comprises a number of testing instruments for the determination of the Bond Work Index as well as flotation and abrasion testers.

Bond Index Tester BT 100 XL

Impact Tester IT 100 XL

Abrasion lester AT 100 XL

Pure Science – No Fiction

Verder Scientific sets standards in high-tech scientific equipment which is used for sample preparation and analysis of solids in the areas of quality control and research. In this way Verder Scientific makes an active and dynamic contribution to the development of new materials and technologies.

Experience our latest product innovations and take a chance to step into the future! Join our competition at www.verder-scientific.com/win

part of VERDER

Retsch GmbH Retsch-Allee 1-5 42781 Haan · Germany

Telephone+49(0)2104/2333-100Telefax+49(0)2104/2333-199

E-Mail info@retsch.com Internet www.retsch.com

+49(0)2104/2333-199 info@retsch.com